January 13, 2016

Data Warehouse - Copmarision Matrix

DW ProductIBM - DB2 Data Warehouse Oracle - ExadataTeradata
Company IBM has four major businesses:
hardware, software, services, and
financing. Data warehousing is part
of the data management business,
which is part of the software business.
Oracle has three businesses: database,
applications, and consulting.
Its database business is the
largest by far and currently represents
80 percent of Oracle’s new
license revenues.
NCR has four businesses: data
warehousing, financial self-service,
retail store automation, and customer
services. The Teradata Division
is responsible for the data
warehousing business
Product URLwww.ibm.com/DataWarehousing‎https://www.oracle.com/database/data-warehouse/index.htmlwww.teradata.com/
STRENGTHS- Rich and flexible data partitioning capabilities
-strong analytic functionality in OLAP and data
mining
- Market presence
- Data Models
- Hardware bundle
- Partner network
- Strong services arm (IBM GSA)
- Intelligent Storage Grid
- Hybrid Columnar Compression
- Smart Flash Cache
- Massively-parallel, partitioned,
- Shared-nothing database server
architecture
- its simple and highlyautomated
physical data warehouse
implementation
-set of indexing approaches that enable
fast access to data
- scalable hybrid-storage capabilities
- Teradata has buddied up with all enterprise Hadoop distro providers, enabled new analytic workloads to be added to Teradata systems (JSON, geospatial, 3D geospatial and others) and more.
WEAKNESSES- complex physical
implementation
- lack of integration
with multidimensional
- High cost of ownership
- DB2 on the open systems platforms continues to suffer from locking problems.
• Closed systems; can’t easily ride cost curves associated with commodity hardware.
• Expensive fault tolerant solution compared with Exadata

- its incomplete visual tools for build and manage functionality
- Proprietary hardware
- Costly to maintain
and upgrade
- Limited skilled implementation expertise
Deployment Platforms IBM AIX
Microsoft Windows
Linux
Sun Solaris
IBM AIX
Hewlett-Packard HP-UX
Linux
Microsoft Windows
Sun Solaris
NCR SVR4 UNIX MP-RAS
Microsoft Windows
Server ArchitectureServer platform with a single processor
Single database partition on a
server platform with a multiple
processors
Multiple partition configurations
• Shared-nothing
• Multiple server platforms
• Server interconnect
• Any number of readers and
writers
Single server platform
Distributed database
Real Application Cluster (RAC)
• Shared, partitioned data
• Multiple server platforms
• Server interconnect
• Any number of readers and
writers
Single and multiple node organization
where a node is a hardware
and software platform specialized
and dedicated to data warehousing
Teradata Warehouse is a sharednothing
architecture in both its single
and multiple node configurations
Data Type Support SQL types:
• Numeric
• Binary
• Character
• Date time
DATALINK
XML
Large objects (max 2 gigabytes)
User-defined types (distinct—
renamed SQL types, structured—
object oriented, reference—
hierarchies of built-in types)
Oracle built-in data types (SQL
types):
• Numeric
• Binary
• Character
• Date time
Large objects (max 2 gigabytes)
User-defined types (object-oriented
types, object identifier types, arrays,
nested tables)
Oracle-supplied types
• Spatial
• Media
• Text
• XML
SQL types:
• Numeric
• Binary
• Character
• Date time
Large objects
Physical Design
Recommendation
Neutral on the physical design
of data warehouses.
Neutral on the physical design
of data warehouses.
Teradata is neutral on the physical
design of data warehouses but
recommends a physical design of
third normal form for data warehouses
to maximize flexibility.
Teradata further recommends that
denormalized structures be implemented
as views or redundant
structures (logical data marts or
special purpose tables).
Physical ImplementationManualManual
Template-based via templates and
Database Configuration Assistant
(DBCA) tool
Automated via Oracle managed
files
Automated
Custom Transformations May be written in:
SQL
Java
C++
May be written in:
SQL
PL/SQL
May be written in:
SQL
C++
Summary Table Support Materialized query tables automate
the creation and management of
summary tables. A materialized
query table stores the results of a
query in a table
Materialized views automate the
creation and management of
summary tables. A materialized
view stores the results of a query in
a table
The OLAP transformations of
Teradata Warehouse Miner can
create and manage summary tables.
SQL Extensions CUBE and ROLLUP in SELECT
Functions
• Aggregate
• Numeric
• Statistical
• Correlation
• Random number generation
• Regression
• Date time
User-defined
CUBE and ROLLUP in SELECT
Functions
• Ranking
• Window aggregate
• Reporting aggregate
• Lag/lead
• Linear regression
• Inverse percentile
• Hypothetical rank and distribution
• First/last
• Numeric
• Date time
User-defined
QUALIFY, SAMPLE, and WITH in
SELECT
Functions and operators
• Aggregate
• Numeric
• Date time
• OLAP
OLAP DB2 provides OLAP build and
manage capabilities, relational
OLAP on DB2 tables, and multidimensional
and hybrid OLAP on a
combination of DB2 tables and
external multidimensional structures.
DB2 OLAP Server is a separately-
priced and -packaged product
that is an external, but tightly
integrated, multidimensional OLAP
facility that IBM OEMs from Hyperion
Solutions.
Oracle OLAP is a separatelypackaged
and -priced product that
provides OLAP functionality
Provides relational OLAP on Teradata
Warehouse tables
Data Mining DB2 Intelligent Miner is bundled
with DB2 Data Warehouse Enterprise
Edition.
Oracle Data Mining is a separately-
priced and -packaged product.
Teradata Warehouse Miner is a
separately-packaged and -priced
product that is tightly integrated
with Teradata Warehouse.

No comments:

Secure a Microsoft Fabric data warehouse

  Data warehouse in Microsoft Fabric is a comprehensive platform for data and analytics, featuring advanced query processing and full transa...