September 30, 2018

Install Hadoop on CentOS on Amazon AWS EC2 Instance



Install and configure Hadoop  on CentOS OS on AWS EC2 instance  in 8 steps:

Step 1:  Setup CentOS AMI on Amazon AWS EC2 Instance
Choose CentOS AMI on Amazon AWS EC2 Instance

Step 2:  Connect to CentOS AWS instance
ssh -i ~/.ssh/filename.pem centos@awsinstanceip

Step 3:  Connecting with root user ( super admin)
sudo su -   

Step 4:  Update all the available packages from repository 
yum update

Step 5: Install JDK
yum install java-1.6.0-openjdkx86_64
Check java version
java –showversion Test
java –version
whereis java
sudo alternatives --config javac

Step 6: Install Hadoop
Install wget to allow download softwares
yum –y install wget
cd /usr/local 
wget http://apache.javapipe.com/hadoop/common/hadoop-2.7.6/hadoop-2.7.6.tar.gz  
          tar -zxvf hadoop-2.7.6.tar.g
set Hadoop home : /usr/local/hadoop-2.7.6
set Java Home: 
cd /usr/lib/jvm/jre-1.6.0-openjdk.x86_64/

Step 7: Configure Hadoop
set the JAVA_HOME and HADOOP_HOME in the root/.bashrc file, by copying the following content

7.1 Open file vi /root/.bashrc
7.2 Copy the content

export HADOOP_HOME= /usr/local/hadoop-2.7.6
export JAVA_HOME= /usr/lib/jvm/jre-1.8.0-openjdk
unalias fs &> /dev/null
alias fs="hadoop fs"
unalias hls &> /dev/null
alias hls="fs -ls"
lzohead () {
hadoop fs -cat $1 | lzop -dc | head -1000 | less
}
export PATH=$PATH:$HADOOP_HOME/bin

7.3 Restart instance and check Java & Hadoop locations

echo $JAVA_HOME
echo $HADOOP_HOME


7.4 Create temp directory for Hadoop Data storage
mkdir -p /tmp/hadoop/data

7.5 Set JAVA_HOME in /usr/local/hadoop-2.7.6/etc/Hadoop/hadoop-env.sh

7.6 Configure the conf/core-site.xml

hadoop.tmp.dir
/tmp/hadoop/data
Location for HDFS.

fs.default.name
hdfs://localhost:54310
The name of the default file system. A URI whose
scheme and authority determine the FileSystem implementation.

-->


7.7
Configure the conf/mapred-site.xml with following content. It is the configuration for JobTracker.

mapred.job.tracker
localhost:54311
The host and port that the MapReduce job tracker runs at.

-->



7.8  configure conf/hdfs-site.xml. Replication factor configuration for the HDFS blocks

dfs.replication
1
Default number of block replications.


Step 8: Start Hadoop

8.1  Formatting the Hadoop filesystem, which is implemented on top of the local filesystems of your cluster, you need to do this the first time you set up a Hadoop installation.

./bin/hdfs namenode –format

8.2  start your Hadoop Single Node Cluster
./sbin/start-dfs.sh
./sbin/start-yarn.sh
8.3 JPS (Java Virtual Machine Process Status Tool )
JPS is a command is used to check all the Hadoop daemons like NameNode, DataNode, ResourceManager, NodeManager etc. which are running on the machine. If JPS doesn’t run , install it via ant.
sudo yum install ant

jps output

1600 ResourceManager
1703 NodeManager
1288 DataNode
1449 SecondaryNameNode
2331 Jps
1164 NameNode


Apache Spark:

Download & Install  Spark

wget http://d3kbcqa49mib13.cloudfront.net/spark-2.0.0-bin-hadoop2.7.tgz
tar xf spark-2.0.0-bin-hadoop2.7.tgz

mkdir /usr/local/spark
cp -r spark-2.0.0-bin-hadoop2.7/* /usr/local/spark
export SPARK_EXAMPLES_JAR=/usr/local/spark/examples/jars/spark-examples_2.11-2.0.0.jar
PATH=$PATH:$HOME/bin:/usr/local/spark/bin
source ~/.bash_profile

Start Pyspark session  
./bin/pyspark
Python 2.7.5 (default, Jul 13 2018, 13:06:57)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-28)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel).
18/09/30 17:07:09 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /__ / .__/\_,_/_/ /_/\_\   version 2.0.0
      /_/

Using Python version 2.7.5 (default, Jul 13 2018 13:06:57)
SparkSession available as 'spark'.
>>>

The text from the input text file is tokenized into words to form a key value pair with all the words present in the input text file. The key is the word from the input file and value is ‘1’.
For instance if you consider the sentence “Hello World”. The pyspark in the WordCount example will split the string into individual tokens i.e. words. In this case, the entire sentence will be split into 2 tokens (one for each word) with a value 1.
(Hello,1)
(World,1)
file.txt contains “Hello World”


Test  Pyspark code
  
PySpark Code:

lines = sc.textFile("file.txt")


sorted(lines.flatMap(lambda line: line.split()).map(lambda w: (w,1)).reduceByKey(lambda v1, v2: v1+v2).collect())


Output:
[(u'Hello', 1), (u'World', 1)]







No comments:

Secure a Microsoft Fabric data warehouse

  Data warehouse in Microsoft Fabric is a comprehensive platform for data and analytics, featuring advanced query processing and full transa...